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The variance of the joint p.d.f, can be split into 
two terms. The first term contains the variances of  all 
positions and depends on temperature, the second 
contains the distances of  the split positions from their 
centre of  gravity and is independent of  temperature. 
This allows the average distance of a split position 
from the centre of  gravity to be determined by 
extrapolating the harmonic temperature factor to 0 K 
(assuming the vibrations at 0 K are negligible). 
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Abstract 

The optical coherence approach has been used for 
computing the reflection curves of crystals with 
spherical precipitates in the Bragg case and the curves 
were compared with those obtained from the usual 
kinematical theory. It has been shown that the asym- 
metry of the curves depends on the sign of the volume 
change caused by defects. Near their maximum the 
shape of the curves is not dependent on the type of 
deformation field of the precipitates and it depends 
on the properties of the perfect crystal. In comparison 
with the kinematical theory it has been demonstrated 
that the difference between the results of the dynami- 
cal theory and those of the kinematical theory are 
significant only near the maximum of the reflection 
cu rves .  

0108-7673/84/060675-05501.50 

I. Introduction 

In dislocation-free silicon crystals grown by the 
Czochralski method structural transformations take 
place during the technological process, namely pre- 
cipitates of other phases or other microdefects can 
occur. The defects affect the electrical properties of 
the semiconductors or they can cause the formation 
of dislocation loops. 

X-ray methods of investigating microdefect forma- 
tion are advantageous owing to their non-destruc- 
tivity. The theoretical description of X-ray diffraction 
from crystals with randomly distributed small defects 
has been given in the kinematical approximation 
in the theory of diffuse scattering in papers by 
Dederichs (1971), Larson & Schmatz (1980) and 
Trinkaus (1972). The kinematical theory enables us 
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676 DIFFRACTION FROM CRYSTALS WITH PRECIPITATES. I 

to compute the angle distribution of the scattered 
intensity and the contribution of the defects to the 
reflection curves of the crystal. 

Within the dynamical theory this problem was 
solved in a coherent approximation by Dederichs 
(1972), who assumed the degree of coherence of the 
diffracted wave to be the same as that of the primary 
wave. Then the first approximation of the diffracted 
intensity is equivalent to the intensity diffracted by 
the perfect crystal with a modified value of the static 
Debye-Waller factor (so-called quasiperfect crystal). 

In papers by Kato (1980) the problem of the 
dynamical diffraction from a randomly disordered 
crystal was solved for the case of a narrow incident 
beam. Olekhnovich & Olekhnovich (1981) found the 
dynamical correction of the angular distribution of 
the diffracted intensity. In a previous paper (Hol2~, 
1982a) the diffraction from crystals with small defects 
was described within the dynamical theory by means 
of the formalism of the function of the mutual coher- 
ence. It has been shown that the degree of coherence 
of the X-rays is decreased by the diffraction from 
crystals with randomly distributed defects, which 
causes changes in the shape of the reflection curve 
and in the angular distribution of the diffracted 
intensity. The general ideas were applied to the case 
of the diffraction from the crystal with randomly 
distributed small amorphous spheres in the Laue case 
of diffraction (Hol3), 1982b) and in the Bragg case as 
well (Hol~, 1983). 

The aim of this paper is the theoretical description 
of the dynamical X-ray diffraction from crystals con- 
taining small spherical precipitates that deform elasti- 
cally the surrounding lattice. This paper contains the 
theory of the Bragg-case diffraction; the Laue case 
will be described in paper II. 

2. The diffracted intensity in the first and second 
approximations 

The computational procedure is based on the results 
of the paper by Hol2~ (1983), referred to as paper I. 
The first and second approximations of the diffracted 
intensity are determined by the first and second itera- 
tional solutions of the integral equation for the mutual 
coherence function of the waves in the crystal. As in 
paper I we shall assume that the dynamical wavefield 
in the quasiperfect crystal is scattered by t h e  
defects kinematically, thus, Green's function G in 
(1.2) is replaced by its kinematical limit (~r (1.16). 
The error introduced by this assumption will be esti- 
mated in the Discussion. 

The formula for the first approximation of the 
diffracted intensity was derived in paper I. 

2c I I~h 1 )=  l~h °) +lg2xh ~ lle 
reciprocal 

space 

v(q) 2 
dqlq h _ Khl2 (1) 

holds, where I~h °) is the intensity diffracted by the 
quasiperfect crystal, Ie is the intensity of the incident 
wave, Xh is the hth component of the crystal polariza- 
bility, c is the defect concentration normalized to 
unity (we assume c ~ 1) and Vc is the volume of the 
unit cell. The quantity v(q)  is given by 

where 

v(q)= f 
real 

space 

d r Y ( r )  exp (2rriq. r), (2) 

V(r) = exp [ -2  ~rih. l( r)] - 1, (3) 

h is the diffraction vector and l(r)  is the displacement 
field in the vicinity of the defect. The vector ko + h + K 
is the wave vector of the diffracted waves inside the 
crystal. 

Iko[ = Ik.I = Iko + hi = K ( 1  + Xo/2) 
holds and 

K~ = K. k J R e  IkjI;j=0, h. 

The Debye-Waller factor of the quasiperfect crystal 

(4) 

The second approximation of the diffracted intensity 
is given by (1.17). Replacing Green's function G by 
G r we obtain 

l~h2) = l~hl)+ l~h0 ) K 2 c 
2 vc 

xReCXhX-hfd q Iv!q) 2 ] 
L Kh qo--Kx s i n  (20)/ 'yh ' 

reciprocal 
space 

(5) 

where Yh is the direction cosine of the vector Re (kh) 
with respect to the internal normal to the crystal 
surface, K,, is the component of K parallel to the 
surface. 

3. The deformation field of the precipitate 

Let us consider spherical precipitates with a spheri- 
cally symmetrical deformation field (Eshelby, 1956). 

[ A  , / I , I  3 for I'1 > Rd 
l( r )  

[ r andom value for Irl-< Rd. (6) 

R d is the defect radius, 4rrA is the change in the 
volume of the crystal caused by a single defect 
neglecting the influence of the crystal surface. The 
quantity V(r )  averaged over all atom configurations 
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in the defects is 

V(r)=fexp(-2~riah'r/[-1 r l3 ) - I  for r >  Rd 
for r]--< Ra. (7) 

For such a complicated form of V(r) the integrals 
(1) and (5) cannot be evaluated analytically. In order 
to enable a direct computation of these integrals the 
actual structure of the crystal at points r, where Rd < 
r[ <_ R = ( 2 7rAh ) 1/2 will be replaced by the amorphous 

structure. Then the following approximation can be 
used (Dederichs, 1971). 

f-27riah, r/lr 3 f o r t >  R =(2"trah) I/2 
v(r) = [ 1  (8) 

- for r[-< R. 

It will be shown in §4 that this approximation does 
not affect the shape of the reflection curve near its 
maximum. 

The Debye-Waller factor can be computed from 
(4) and (7) or approximately from (4) and (8). The 
exact computation gives 

e-L = exp {--Pd[1- 3S(w)]}, (9) 

where 

oo (_ l ) .w2 .  
S(w)= ~'~ ( 2 n + l ) ! ( 4 n - 3 ) '  w=27rah/R] (10) 

n = l  

and Pd= (4/3)rrR3(c/Vc) is the relative amorphous 
volume of the crystal. The series (10) converges and 
its value is 

S ( w )  = 
1 sinw 2cosw 

3 5w 15 

4 
+ - - [ w  sin W--(27r)I/2w3/2C(wI/2)], 

15 
( l l )  

? 2 
C ( x )  - I t2 (27r)1/2 , ,  cos  d t  

0 

is the Fresnel integral. Using the approximate 
relation (8) we get 

4 3 c e-L=e -P, P=-~TrR -~, (12) 

where P is the relative volume of spheres with radius 
R with respect to the crystal volume. The numerical 
considerations show that for realistic parameters of 
defects both formulas (9) and (12) give e -L= 1 with 
an accuracy better than several percent. 

For v(q) it follows from (2) and (8) that 

2Ah. q sin (27rqR) 
v(q)  -- q3 R 

sin (27rqR) - 2wqR cos (2wqR) 
27r2q3 (13) 

4. The reflection curves of crystals with precipitates 

Formulas (1) and (5) can be rewritten in the forms 

i~h l) icho) l 2 2 c Im[Qh(Kh)] (14) = +zK [Xh ~ l e  Im(Kh) 

and 

i<h2 ) r ( l )  .a_! tE2r(O ) C 
a h  " 2  " x  l h  - -  

Vc 

× Re [XhX-h Qo( r,x.Sin (20)) ], 
L Kh 'Y--h /3  

respectively, where 

(15) 

f v (q)  [______~ 2 
Qj(¢) = } dq qJ -¢ '  j=O,h.  (16) 

r e c i p r o c a l  
s p a c e  

The explicit evaluation of Qj has been deposited.* 
Formulas (14) and (15) are the basis of the numerical 
computation of the reflection curves. 

Let us consider properties of these curves near their 
maxima. If 

2 w l K R ~ I  (17) 

holds, then the value of Qj can be replaced by its limit 

lim Qj(~). 
&-*O 

If ~ is complex, then 

lim Qj(~)=v.p. f dq v(q)-------~2 ~-,,o qj 
r e c i p r o c a l  

s p a c e  

f 
+iTr sign [Im (so)] ] dq±]v(q±) 2, 

q±.Re(kj)=O 
(18) 

where v.p. denotes the principal value of the integral. 
Thus, the first approximation of the diffracted 
intensity near the maximum of the reflection curve is 
approximately given by 

It.,'21 12 C , 27r2(R4+87rZA2h2) 
I~h 1)'- I~h °) ± ~  Xh -~ le i-i-n~ ~ - ~  . (19) 

The numerical computation of the reflection curves 
was carried out by means of exact formulas (14) and 
(15). The values of A and P were chosen so as to 

* This material has been deposited with the British Library 
Lending Division as Supplementary Publication No. SUP39537 (4 
pp.). Copies may be obtained through The Executive Secretary, 
International Union of Crystallography, 5 Abbey Square, Chester 
CHI 2HU, England. 
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correspond to typical precipitates SiO2 in Czoch- 
ralski-grown Si. Since the amorphous spheres used 
in our model have the radius R = (27rAh)~/2>> Rd, it 
is necessary to choose P>> I'd. The reflection curves 
of the crystal with precipitates in 422 Cu Kal sym- 
metrical Bragg-case diffraction are plotted in Figs. 
l (a ) ,  (b). Fig. l ( a )  shows the region near the exact 
Bragg position where (17) is valid; the whole curve 
is demonstrated in Fig. l(b).  Fig. 2 shows the com- 
parison of the contribution to the reflection curve in 
the first approximation with the intensity computed 
in the kinematical approximation by means of the 
theory of diffuse scattering (Dederichs, 1971). 

4. Discussion 

In the region of validity of approkimation (17) the 
form of the first iteration contribution to the reflection 
curve is not dependent on the type of the deformation 
field of the microdefects and it is determined only by 
the dynamical absorption coefficient Im (Kh) and by 
c(R4+87r2A2h2). Thus, the defect parameters can 
affect only the absolute value of this contribution but 
not the shape of the reflection curve. From the random 
positions of the defects it follows that the value of 

lh/le # " ] 

! // ~i', ! 

o 1 
I i 
l ] 

Ih/le 

0.05 

o lO 

(a) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - . . . . .  1 

J 

~, 

o 20 
A~(") 

(b) 

Fig. 1. The reflection curve (Cu Ka~ 422 symmetrical Bragg case 
on Si) of the quasiperfect crystal (full line), the contribution of 

(i)  the first approximation (I h -- l(h °), dashed line) and of the second 
approximation (I(h 2)- I(h ~), dotted line). The whole reflection 
curve i~2) is plotted as dot-and-dashed line. The parameters of 
the defects A = 2000 nm 3, P = 0.01. (a) shows the region of the 
maximum of I(h °), (b) the whole reflection curve. 

the contribution of the first iteration to the intensity 
is proportional to the amount of irradiated defects, 
which is inversely proportional to the absorption 
coefficient of the waves inside the quasiperfect crystal. 

If (17) is not valid, the shape of the reflection curve 
depends on the type of the deformation field and it 
is sensitive to the value of R. In contrast to the area 
near the maximum, where the reflection curve was 
not essentially affected by approximation (8), far from 
the maximum assumption (8) causes an essential error 
in the diffracted intensity. In this region the curve 
shows an asymmetry depending on the sign of A. If 
A > 0 (the defect compresses the surrounding lattice) 
the diffracted intensity is greater for positive devia- 
tions of the angle of incidence from the Bragg 
position than for negative deviations. If A < 0  the 
asymmetry is opposite. 

From Fig. 2 it is obvious that the dynamical 
approach yields corrections to the kinematical diffrac- 
tion curve that are essential only in the close vicinity 
of the maximum of the reflection curve of the 
quasiperfect crystal. The tails of the curve can there- 
fore be computed kinematically. 

In the maximum of the reflection curve the 
contribution of the second iteration is essential. 
This contribution can be interpreted as the decrease 
in the intensity diffracted from the quasiperfect crystal 
owing to the defects and it corresponds to the second 
approximation in the coherent diffraction theory 
(Dederichs, 1972). 

Deriving formulas (1) and (5) we have replaced 
Green's function G in (1.1) by its kinematical limit 
t~ K. It was shown in paper 1 that the error caused 
by this assumption is negligible if 

PR 2 < 10 -2 ixm 2. (20) 

This estimate is valid in the case of precipitates if (8) 
holds. The differences between our results and those 
from usual kinematical theory are essentially only in 

Ih/le 

0,05 

0 20 ~(,,) 

Fig. 2. The comparison of the first approximation I~ ~)- I~ m (full 
line) with the intensity of the diffuse scattering computed from 
the kinematical theory (dashed line). The reflection curve of I~ °) 
is plotted as a dotted line, the parameters of the diffraction and 
of the defects are the same as in Fig. 1. 
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the close vicinity of the maximum of the reflection 
curve, where, however, the shape of the reflection 
curve is not dependent on the type of the deformation 
field of the defects. 

The results obtained enable us to explain the con- 
trast of the growth striations with microdefects in 
double-crystal topography. From the above results it 
is obvious that for all angles of incidence of the 
primary wave the intensity diffracted from the region 
with the microdefects is greater than that from the 
perfect crystal. Thus, in the case of diffraction which 
is not sensitive to the variation of the mean lattice 
parameter in the striations, the striations with micro- 
defects have a black contrast. 
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Abstract 

Any crystal whose point group is a subgroup of index 
p of its lattice symmetry (merohedral crystals, p = 2, 
4 or 8) can be referred to p non-equivalent possible 
settings of the cordinate axes. These possible settings 
are tabulated, for all 44 oriented point groups and 
for each setting s, as the triplet of indices hsksls into 
which the original hkl transforms, together with the 
relevant transformation operation. At least one such 
set of suitable observed structure factors should be 
published with every structure description for 
merohedral crystals so that the chosen setting can be 
identified. A list of the types of reflections unsuitable 
for orientation purposes is given. A unique orienta- 
tion of the coordinate axes could be reached ex- 
perimentally, without structural knowledge, by 
attributing to the largest lobs, indices hkl in a specified 
asymmetric domain of the point-group symmetry of 
the lattice. The table also serves as a complete collec- 
tion of possible twin laws in twinning by merohedry;  
each transformed symbol hsksls represents the reflec- 
tion which, on the diffraction pattern of the twin, 
contributes its intensity to that of hkl. 

0108-7673/84/060669-06501.50 

Introduction 

When measuring physical properties of crystals pre- 
viously described in the literature, it is essential to 
identify, among the possible crystal settings, the one 
that was used for the structure solution. The crystal- 
lographer who collects diffraction intensities for a 
crystal of known structure is confronting the same 
problem. As long as the intensity data were tabulated 
in the original publication, the retrieval of the crystal 
setting was straightforward: the reciprocal axes were 
simply chosen in such a way that the intensities of 
the indexed reflections would match those of the 
published ones. 

At the present time intensity data are no longer 
published, being instead deposited in manuscript 
form in some archival center. As a consequence, 
ambiguities in the identification of the axial setting 
arise in all crystals but those with the same point- 
group symmetry as their lattice symmetry (holosym- 
metric crystals) or with all its symmetry axes 
(holoaxial hemisymmetry, column 2 in Table 1) pro- 
vided the latter are referred to a right-handed coordin- 
ate system, RHCS. This situation exists even if metric 
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